Elementary Algebra Skill-Builder # E – 2 Applying the Power Rule for Exponents

The following rule applies when raising an exponential expression to a positive integer.

For any nonzero real number *a* and positive integers *m* and *n*,

$$\left(a^{m}\right)^{n}=a^{mn}.$$

The rule says that to raise an exponential expression to a positive integer *n*, keep the base *a* and multiply the exponents.

Examples

- **1.** $(x^3)^4 = x^{3 \cdot 4} = x^{12}$
- **2.** $(a^8)^9 = a^{8.9} = a^{72}$

We can combine the power rule and product rule in one problem.

3. Simplify: $a^5(a^2)^4$ Solution:

$$a^{5}(a^{2})^{4} = a^{5} \cdot a^{2 \cdot 4} = a^{5} \cdot a^{8} = a^{5 \cdot 8} = a^{13}$$

4. Simplify: $2x^8(x^2)^2(x^3)^4$

Solution:

$$2x^{8}(x^{2})^{2}(x^{3})^{4} = 2x^{8} \cdot x^{2 \cdot 2} \cdot x^{3 \cdot 4} = 2x^{8} \cdot x^{4} \cdot x^{12} = 2x^{8+4+12} = 2x^{24}$$

We may also need to apply the commutative and associative properties.

5. Simplify:
$$(3ab^4)(a^2)^5 b^3(b^6)^2(a^4)^3$$

Solution:
 $(3ab^4)(a^2)^5 b^3(b^6)^2(a^4)^3$
 $= (3ab^4)a^{2\cdot5}b^{6\cdot2}a^{4\cdot3}$
 $= (3ab^4)\cdot a^{10}\cdot b^3\cdot b^{12}\cdot a^{12}$
 $= 3(a\cdot a^{10}\cdot a^{12})(b^4\cdot b^3\cdot b^{12})$
 $= 3a^{1+10+12}b^{4+3+12}$

 $= 3a^{23}b^{19}$

Elementary Algebra Skill-Builder # E – 2 Applying the Power Rule for Exponents

Simplify the following using the power rule for exponents.

1. $(n^5)^7$	
2. $(y^8)^3$	
3. $(w^4)^{12}$	
4. $(c^{30})^8$	

Simplify the following using the power and product rules for exponents. Apply the commutative and associative properties for multiplication, if necessary.

5.
$$(a^2)^5 (a^3)^2$$

6. $5x^{11} (x^2)^4 (x^3)^3 (x^3)^2$
7. $(a^3)^2 b^4 (a^4)^3 a^2 (b^3)^5$
8. $-6y^3 (y^5)^2 (z^4)^5 (y^2)^4 z^{11}$

Elementary Algebra Skill-Builder # E – 2 Applying the Power Rule for Exponents

Answer Key:

- **1.** *n*³⁵
- **2.** *y*²⁴
- **3.** *w*⁴⁸
- **4.** *c*²⁴⁰
- **5.** *a*¹⁶
- 6. $5x^{34}$
- 7. $a^{20}b^{19}$
- 8. $-6y^{21}z^{31}$

Prepared by: Teresa V. Sutcliffe Summer 2012