Math 270 Linear Algebra

Chapter 2 Solving Linear Systems

2.4 Equivalent Matrices

Definition If *A* and *B* are two *m* x *n* matrices, then *A* is <u>equivalent</u> to *B* if we obtain *B* from *A* by a finite sequence of elementary row or elementary column operations.

Remarks

A is equivalent to A.
 A is equivalent to B ⇒ B is equivalent to A
 A is equivalent to B and B is equivalent to C ⇒ A is equivalent to C

Proof: Exercise 1

2. A and B are row equivalent \Rightarrow A and B are equivalent

Proof: Exercise 4

Theorem If A is any nonzero m x n matrix, then A is equivalent to a partitioned matrix of the form

$$\begin{bmatrix} I_r & O_{n-r} \\ I_{m-r}O_n & O_{n-r} \end{bmatrix}$$

Proof: Read.

Example 1 #6 p.129

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{pivot on } a_{11}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{pivot on } a_{22}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{-C_2 + C_3} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-C_1 + C_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Theorem Two $m \ge n$ matrices A and B are equivalent if and only if B = PAQ for some nonsingular matrices P and Q.

Proof:

("
$$\Rightarrow$$
") A and B are equivalent
 $\Rightarrow B = E_s...E_2E_1AF_1F_2...F_t$
Let $P = E_s...E_2E_1$ and $Q = F_1F_2...F_t$

 $(" \Leftarrow ")$ Exercise

Theorem An $n \ge n$ matrix is nonsingular if and only if A is equivalent to I_n .

Proof:

 $(" \Rightarrow ") A nonsingular \Rightarrow A row equivalent to I_n$ $\Rightarrow A equivalent to I_n$

("
$$\Leftarrow$$
 ") *A* equivalent to $I_n \Rightarrow I_n = E_r ... E_2 E_1 A F_1 F_2 ... F_s$
Let $E_r ... E_2 E_1 = P$ and $F_1 F_2 ... F_s = Q$. Then $I_n = PAQ$, where *P* and *Q* are nonsingular. Then $A = P^{-1}Q^{-1}$ which implies that *A* is nonsingular.